PURIFICATION OF THE HUMAN PLASMA ALPHA₂-SH GLYCOPROTEIN BY ZINC CHELATE AFFINITY CHROMATOGRAPHY

J. P. LEBRETON

Unité de Recherche U-78 INSERM, Génétique des Protéines Humaines, 543 chemin de la Bretèque, 76230 Bois-Guillaume, France

Received 12 April 1977
Revised version received 6 June 1977

1. Introduction

Plasma alpha₂-SH glycoprotein was first obtained and named alpha₂-Z by Heremans [1]. This protein was soluble together with IgA globulin at concentrations of zinc ions higher than 0.05 M. In 1961, Schmid and Bürgi [2] showed that the former, as well as another glycoprotein named alpha₂-Zn [3], exhibited minimum solubility between 0.01 M and 0.03 M zinc acetate in the ethanol procedure. These two proteins were separated to a great extent by using low concentration of Ba²⁺ ions [2]. Schultze et al. [4] demonstrated that the protein obtained by Heremans [1] and the one discovered and named alpha₂-Ba by Schmid and Bürgi [2] were identical, and this protein was finally called alpha₂-SH.

Recently, Porath et al. [5] showed that chelateforming ligands for metal ions (Cu, Zn, Cd, Hg, Co, Ni) could be attached to agarose derivatives. These authors demonstrated that the affinity of proteins for such adsorbents is pH dependent.

As little is known about the structure of alpha₂-SH, metal chelate affinity chromatography was used to obtain a better resolution of the human plasma alpha₂ globulin fraction. The present paper shows that, by this technique, alpha₂-SH was obtained free from alpha₂-Zn with a similar pI and molecular weight.

2. Materials and methods

CM—Sepharose CL-6B, Sephadex G-200 and epoxy-activated Sepharose 6B were purchased from Pharmacia Fine Chemicals Co., Uppsala, Sweden.

Immunoelectrophoresis and double immunodiffusion were performed on 1.3% agar in 0.05 M barbital buffer, pH 8.2, by using antibody to human serum (Organon Teknika S.A.) and anti-alpha₂ monospecific immune sera (Behringwerke A. G., Marburg, FRG). The alpha₂-SH content was measured by single radial diffusion (Partigen plate, Behringwerke A.G.). Protein determinations were performed by the Biuret method. SDS-Polyacrylamide gel electrophoresis was carried out in 10% or 7.5% acrylamide. Gel-filtration (Sephadex G-200 column (2.5 × 100 cm)) was carried out with 0.1 M. Tris-HCl buffer, pH 8.0, containing 0.1 M NaCl. The column was standardized with blue dextran 2000 (Pharmacia Fine Chemicals Co.). Fractions of 5 ml were collected.

A human serum alpha₂ globulin fraction rich in alpha₂-SH, obtained from pooled normal human sera, was prepared by precipitation at 1.8 M (NH₄)₂SO₄, followed by ion-exchange chromatography on a CM—Sepharose CL-6B column equilibrated with a 0.025 M acetate buffer, pH 5.0, containing 2 mM CaCl₂, 2 mM MgCl₂, 2 mM MnCl₂ and 50 mM ϵ -aminocaproic acid. The proteins were eluted with the same buffer and then step-wise with increasing concentrations of 0.02-0.2 M NaCl. Alpha₂-SH was present in the first fractions eluted (up to 0.06 M NaCl). All the protein fractions which contained alpha2-SH and alpha2-Zn were pooled and two preparations were retained for the zinc-chelate affinity chromatography: the first one contained apparently intact alpha₂-SH as shown by immunoelectrophoresis and immunodiffusion in comparison to fresh human serum against a monospecific anti-alpha₂-SH; the second one showed apparently intact alpha₂-SH

together with a spontaneous fragment of this protein, as shown by immunodiffusion and by immunoelectrophoresis.

Preparation of the chelate gel was carried out essentially as described by Porath et al. [5]: 30 ml of swollen epoxy-activated Sepharose 6B (bis-oxirane activated agarose containing approx. $15-20 \mu mol$ epoxy-groups/ml) were added to 20 ml 2 M Na₂CO₃ containing 4 g iminodiacetic acid, disodium salt. The gel suspension was heated to 65°C and continuously stirred for 24 h in a water-bath. After coupling, at pH 12.4, the gel was thoroughly washed with distilled water. A water solution of ZnCl₂ (1 g.1⁻¹) was passed through a column containing the bis-carboxymethylamino-Sepharose 6B: 1.5 × 12 cm (15 ml) gel bed, flow rate 40 ml/h. Fractions of 2 ml were collected. The pH was determined in each tube and the presence of Zn²⁺ was assessed by the formation of an insoluble ZnCO₃ precipitate (0.2 ml 2 M Na₂CO₃).

3. Results and discussion

The gel-bound chelate of zinc was obtained by passing a ZnCl₂ solution through bis-carboxymethylamino-Sepharose 6B. In a typical experiment, the formation of the metal chelate was shown by a pH drop (pH 2.4) which remained constant from 42-85 ml elution vol. Furthermore, Zn2+ appeared at the same time as the pH dropped. When the pH returned to neutrality, the column was equilibrated with 0.05 M Tris-HCl buffer, pH 8.0, containing 0.15 M NaCl, an alpha₂ fraction (26 mg in 2 ml) rich in apparently intact alpha₂-SH applied (see fig.1) and eluted with the same buffer. When the $A_{280 \text{ nm}}$ was less than 0.02, elution was continued with 0.1 M Na phosphate buffer, pH 6.5, containing 0.8 M NaCl. In the same way, 0.1 M Na acetate buffer, pH 4.5, containing 0.8 M NaCl was passed through the column but no appreciable absorbance was noticed. Finally,

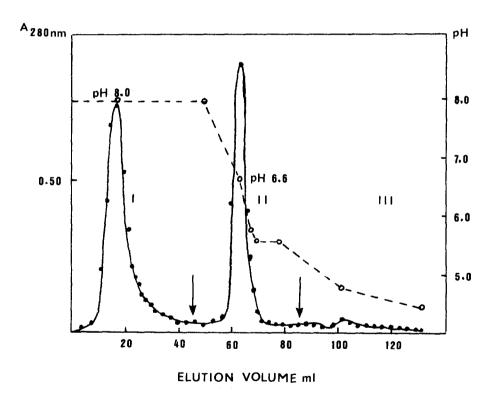


Fig.1. Zinc chelate affinity chromatography (ZCAC) of a human serum alpha₂ globulin fraction rich in alpha₂-SH. Conditions were: 1.5 × 12 cm (15 ml) gel bed, sample vol. 2 ml (26 mg alpha₂ fraction). Elution system: (I) 0.05 M Tris—HCl buffer, pH 8.0, containing 0.15 M NaCl; (II) 0.1 M Na phosphate buffer, pH 6.5, containing 0.8 M NaCl; (III) 0.1 M acetate Na buffer, pH 4.5, containing 0.8 M NaCl, flow rate 20 ml/h.

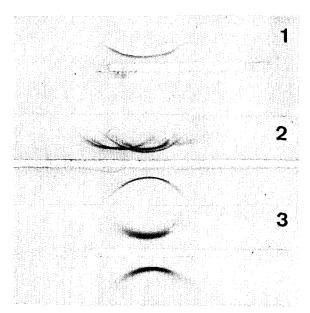


Fig.2(a)

Fig.2(a). Immunoelectrophoretic patterns of the proteins eluted after zinc-chelate affinity chromatography (ZCAC: see fig.1). In 1: upper well, peak I; lower well, peak II (developed with anti-alpha₂-Zn immuneserum). In 2: upper well, peak I; lower well, peak II (developed with anti-human total immuneserum). In 3: upper well, peak I; lower well, peak II (developed with anti-alpha, -SH immuneserum). Fig.2(b). Controls after ZCAC (second experiment: same elution profile as that in fig.1; see text for details). 1,2,3: same disposition as that in fig.2a. In 4,5: controls after Sephadex G-200 gel filtration of peak II of ZCAC. In 4: upper well, first protein fraction eluting in the void volume of the G-200 column; lower well, second protein fraction, (developed with anti-human immuneserum). In 5: same disposition that in 4 (developed with anti-alpha₂-SH immuneserum). Anode is at the left.

the column was eluted with 0.05 M EDTA, pH 7.0, 0.5 M in NaCl, then washed with distilled water. The zinc chelate was regenerated by passing zinc chloride through the column as indicated above.

Material from peaks I and II were concentrated and analyzed. The unique protein identified by immuno-electrophoresis in peak II (fig.2a) was alpha₂-SH glycoprotein, and after concentration of the volume, unidentified traces of a beta₁ and an alpha₁ appeared. In peak I, alpha₂-Zn glycoprotein, a prealbumin, two alpha₂ glycoproteins and traces of alpha₂-SH were identified. By radial immunodiffusion of the two protein fractions (peak I and II) the recovery of

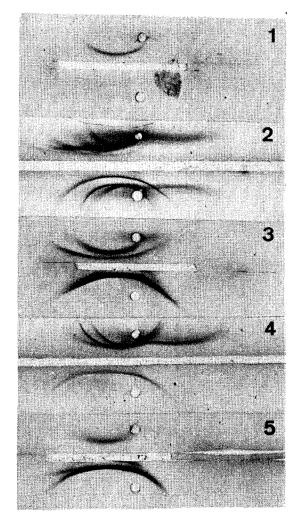


Fig.2(b)

alpha₂-SH was shown to be about 85% in peak II. By PAGE—SDS of the latter, a prominent band of app. mol. wt 50 000—55 000 was obtained. In a second experiment, a protein fraction which contained partially denatured alpha₂-SH, alpha₂-Zn, some unidentified alpha₂ and beta globulins, and alpha₂ macroglobulin, was applied to the column. An alpha₂-SH fragment, as shown by immunodiffusion and a small proportion of native alpha₂-SH, were not retained, at pH 8.0 (fig.2b, 3). Alpha₂ macroglubulin co-eluted, at pH 6.6, with apparently intact alpha₂-SH (fig.2b, 2). Sephadex G-200 filtration of this fraction showed two peaks: in the first one, alpha₂ macroglobulin was

eluted in the void volume of the column. Alpha₂-SH was obtained into the second peak (fig.2b, 4,5) with PAGE-SDS of this fraction showing a major band of app. mol. wt 50 000-55 000.

The chelate column was reactivated and used eight times. Under the following conditions (column 23×1.5 cm), more than 60 mg protein were chromatographed with identical clution profile and when the column was used in the absence of zinc ions, all proteins eluted, at pH 8.0, in the starting buffer.

This chromatographic procedure was highly reproducible. Thus, under the present experimental conditions, alpha₂-SH was the most strongly absorbed protein, at pH 8.0, along with some alpha₂-M, alpha₁-B, and traces of unidentified alpha₁ and beta glycoproteins. On the other hand, alpha₂-Zn and some other alpha₂ glycoproteins were never absorbed onto the column. As noticed by Porath et al. [5], imidazole and thiol groups may interact with Zn²⁺ ions fixed on the column but it is speculative to draw a parallel between the histidine and cysteine (or other amino acids) content of these proteins and their binding capacity, before their quaternary structure is elucidated.

The use of zinc-chelate chromatography may make easier the purification of alpha₂-SH which is frequently present in alpha₂-kininogen preparations [6]. So far, the primary structure of alpha₂-SH is unknown, and further information is needed about its susceptibility to cleavage. Furthermore, its biological function is not established although Van Oss et al. [7] observed that alpha₂-SH possessed opsonic properties. Dickson et al. [8] showed that this protein was a constituent of both adult and foetal human bone matrix. Also, the concentration of alpha₂-SH is decreased in the

serum of trauma patients [9]. This observation, added to my preliminary results, that the concentration of the protein is significantly lowered in sera of patients suffering from inflammatory processes (in inverse ratio to the increase of 'acute phase' proteins) emphasizes the need of further investigation of this plasma protein.

Acknowledgements

I wish to thank Ms Martine Hiron for her expert technical assistance and Mr Marc Fontaine for helpful discussion. This work was supported by the University of Rouen.

References

- [1] Heremans, J. (1960) in: Les Globulines sériques du système Gamma (Arscia S. A., ed) p. 103, Bruxelles.
- [2] Schmid, K. and Bürgi, W. (1961) Biochim. Biophys. Acta 47, 440-453.
- [3] Bürgi, W. and Schmid, K. (1961) J. Biol. Chem. 236, 1066-1074.
- [4] Schultze, H. E., Heide, K. and Haupt, H. (1962) Naturwiss. 49, 15.
- [5] Porath, J., Carlsson, J., Olsson, I. and Belfrage, G. (1975) Nature 258, 598-599.
- [6] Londesborough, J. C. and Hamberg, U. (1975) Biochem. J. 145, 401–403.
- [7] Van Oss, C. J., Gillman, C. F., Bronson, P. M. and Border, J. R. (1974) Immun. Commun. 4, 329-335.
- [8] Dickson, I. R., Poole, A. R. and Veis, A. (1975) Nature 256, 430-432.
- [9] Van Oss, C. J., Bronson, P. M. and Border, J. R. (1975)J. Trauma 15, 451-455.